

Rothenburg/O.L. Rothenburg/O.L. Rothenburg/O.L. Rothenburg/O.L. Rothenburg/O.L. Rothenburg/O.L. Niesky.

Niesky. Pier Schrift Reichenbach/Oberlausitz. Pier Schrift Reichenbach/Oberlaus

86 (222)

Rn

Dichte 9,73 g/L

F.E. Dorn, 1900

Siedepunkt -62°C

 $4f^{14} 5d^{10} 6s^26p^6$

Schmelzpunkt

Radon

-71°C

Thomas Schönmuth
Uwe Heidrich
Hochschule Zittau-Görlitz
Fakultät Maschinenwesen
Strahlentechnik/Radonzentrum

Tel: 03583 612 4882 Email: t.schoenmuth@hszg.de

Radon in der Oberlausitz

Inhalt:

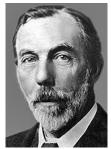
- Physikalische Eigenschaften: Was und Woher?
- Gesundheitliche Auswirkungen: Wann wird es bedenklich?
- Was tun bei erhöhten Radonwerten?

Eine kurze Geschichte

1900:

E. Rutherford:

"Emanation" bei Th-Verbindungen Friedrich **Dorn** "Radium Emanation" Gas aus Radium


Ernst Dorn (1848 – 1916)
Bild: catalogus-professorum-halensis.de

1901: Rutherford/Brooks: Emanation ist radioaktives Gas

1908: Ramsey/Whytlaw-Gray

physik. Grundlagen: Nitens...(das Glänzende)

ab ca. 1925: "Radon"

Sir William Ramsey (1852 – 1916) (...an der Entdeckung aller Edelgase beteiligt)

125 Jahre Radon 🤓

Rn

F.E. Dorn, 1900

4f¹⁴ 5d¹⁰ 6s²6p⁶

Radon

86 (222)

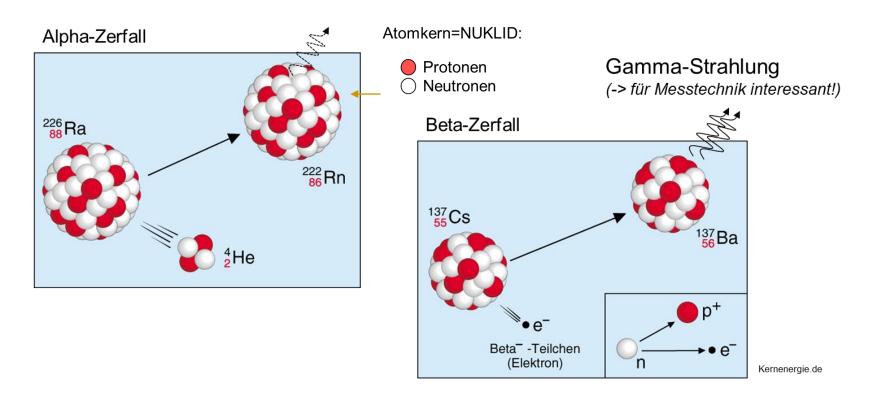
Dichte 9,73 g/L

Siedepunkt -62°C

Schmelzpunkt

-71°C

Schwerstes (EDEL)**GAS**, Farblos, Einatomig radioaktiv


Element mit Ordnungszahl 86

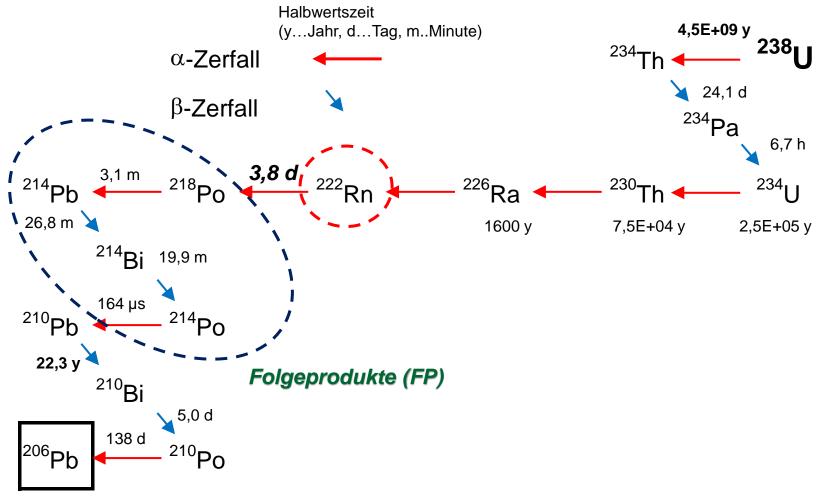
Leicht in Wasser löslich Hoher Diffusionskoeffizient

Radioaktivität:

Spontane Umwandlung instabiler <u>Atomkerne</u> unter Energieabgabe

Aktivität = Anzahl der Zerfälle pro s

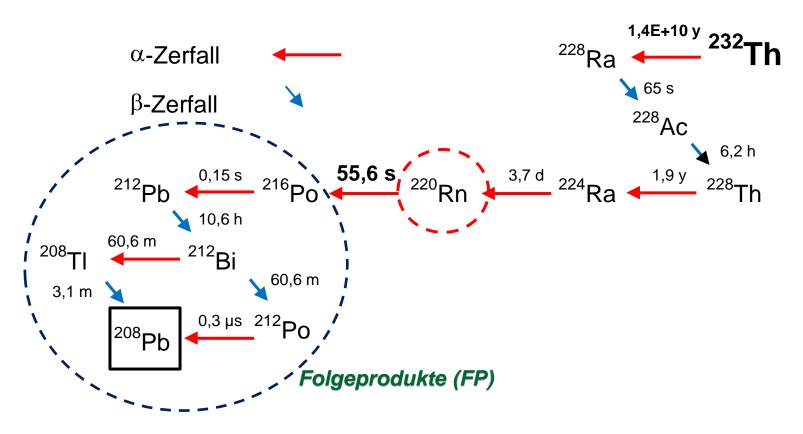
1 Zerfalls/s = 1 **Becquerel [Bq]** (alt: Curie (Ci) – 1 Ci=3,7*10 10 Bq)


Grundlegende Eigenschaften

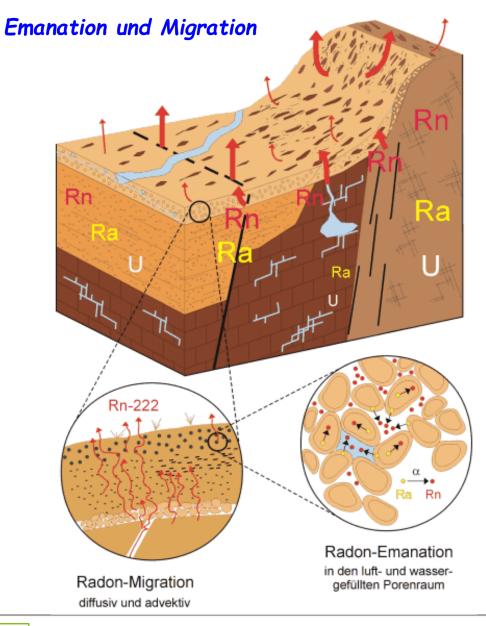
Ordnungszahl	86 (VIII. Hauptgruppe)				
CAS Nummer	10043-92-2				
Dichte	0,0097 g/cm ³	(20°C)			
Siedepunkt	-61,7°C (211,5	5 K)			
Schmelzpunkt	-71°C (202 K)		Leicht in Wasser		
Löslichkeit in Wasser	230 cm ³ /kg (20)°C) / 510 c	löslich		
Diffusionskoeffizient in Luft	0,1 cm ² s ⁻¹				Hoher Diffusionskoeffizient
Elektronenkonfiguration	[Xe] 4f ¹⁴ 5d ¹⁰ 6s	² 6p ⁶			
Natürliche Isotope	Name	Rn-219	Rn-220	Rn-222	
		Actinon	Thoron	Radon	← ISOTOPE
	Halbwertszeit	3,96 s	55,6 s	3,8 d	
	Häufigkeit	1%	9%	90%	
In Praxi ohne Bedeutung (Sonderfall Medizin) möglicherweise über Baustoffe					

Uran-Radium-Reihe

Herkunft (1)



URAN: ca. 3 μg/g im Boden


Herkunft (2)

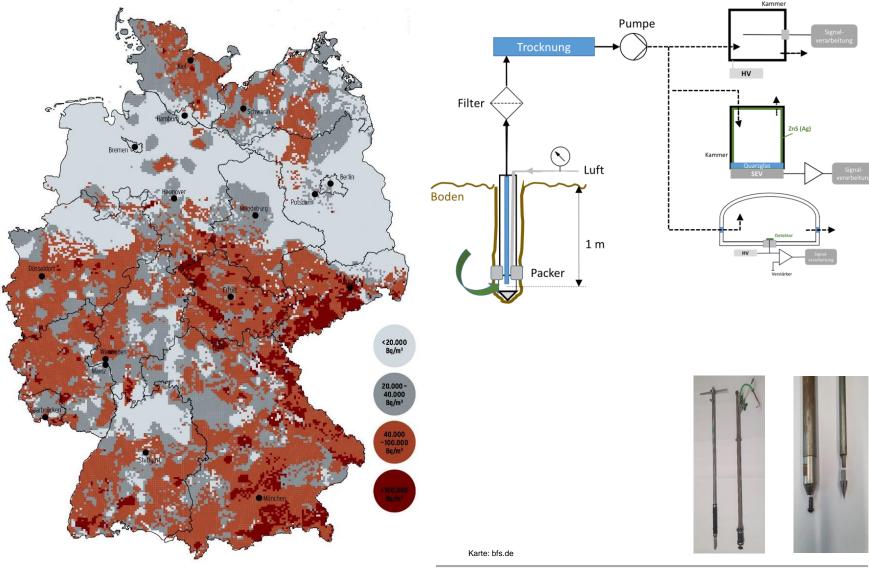
THORIUM: ca. 10 µg/g im Boden

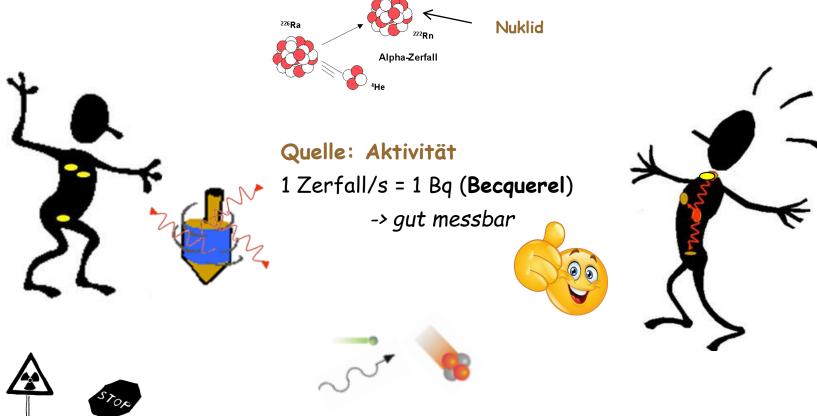
Kurze Halbwertszeit -> **THORON = Rn-220 nur in Innenräumen zu beachten** (Baustoffe) - Beiträge gegenüber Radon oft gering

Radon ist gasförmig:

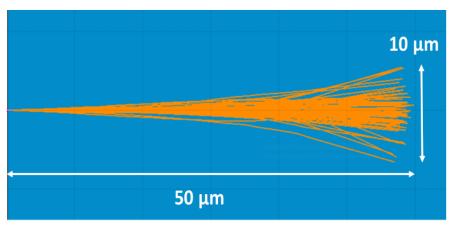
Messwert ist daher eine Aktivitätskonzentration (kurz: **Radonkonzentration**)

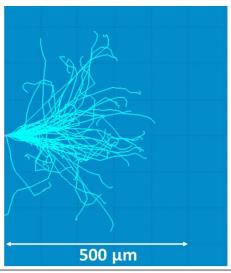
Einheit: [Bq/m³]

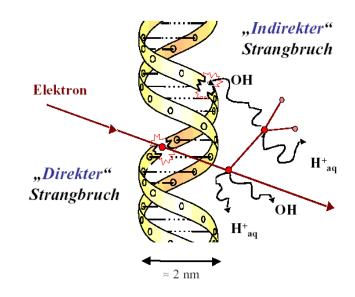

Grafik: Kemski


-> Radon in der Bodenluft (Standard: 1m Tiefe)

Radonaktivitätskonzentration in der Bodenluft

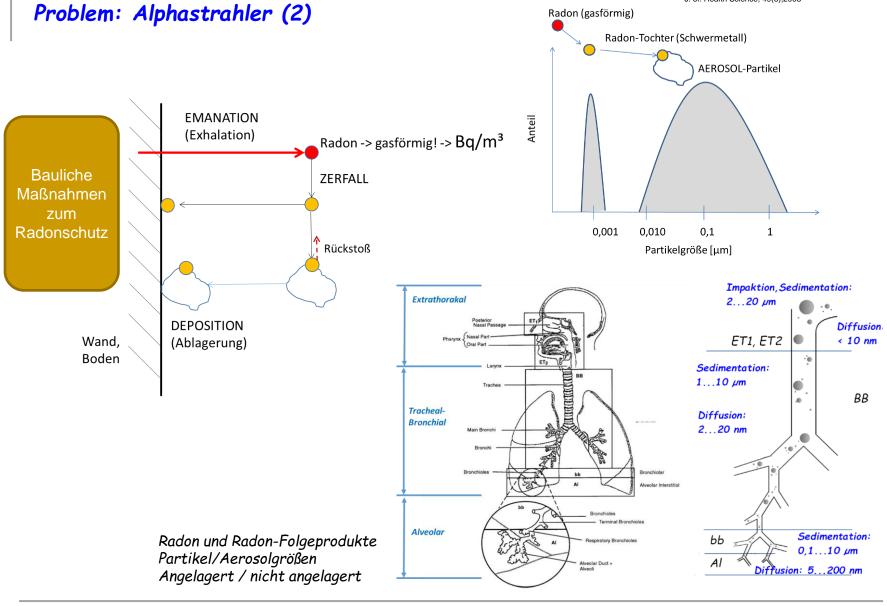

Messung und Wirkung

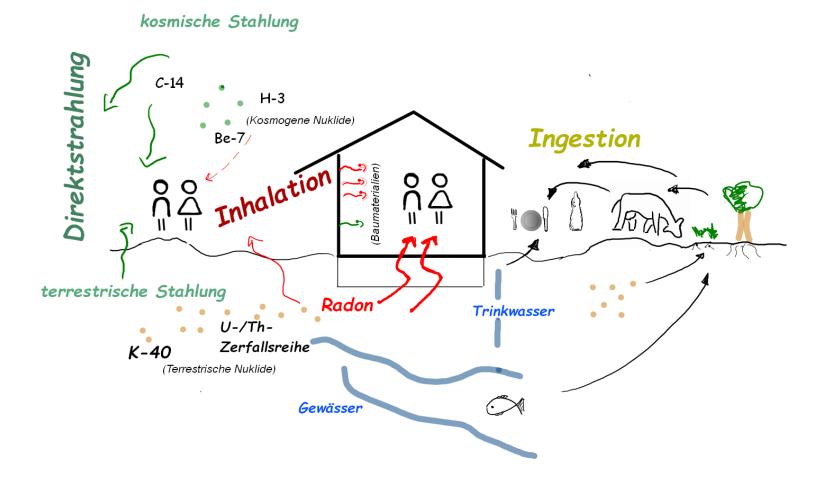

-> Biologische Wirkung: Dosis [mSv]


Problem: Alphastrahler (1)

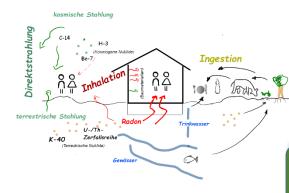
Reichweite von Alphastrahlen (oben) und Elektronen (unten) in Wasser

 $\rm E_{Alpha}$ =6 MeV (entspricht etwa der Energie der Radonzerfallsprodukte); zum Vergleich: $\rm E_{Beta}$ = 1 MeV




Beachte:

Alpha = Dicht ionisierende Strahlung!



Zusammenfassung: Natürliche Strahlenexposition

ca. 90% der Dosis

Folgeprodukte (!)

vernachlässigbar

(Anteil < 10%)

Radon:

durch die

Thoron: i.a.

Strahlenexposition in Deutschland, Angaben in mSv pro Kalenderjahr

Terrestrisch: 0,4 mSv

Kosmisch: 0,3 mSv

Ingestion 0,3 mSv

Radon-FP
1,1 mSv
(Innen ~ 0,9 mSv
Aussen~0,2 mSv)

Haushalt ~ 0,02 mSv

Fallout < 0,01 mSv

Tschernobyl Fukushima < 0,02 mSv

Kerntechnik; < 0,01 mSv

Medizin 1,7 mSv

davon Röntgen/CT 1,6 mSv 70

0,05 mSv 311.000

0,62 mSv 37800

0,14 mSv 70600

Rn 1,3 mSv NORM 800

Beruf: 0,11 420.000

Bevölkerung

(Daten für 2020)

Berufliche Strahlenexposition: obere Zeile – mittlere Dosis; untere Zeile – Anzahl der Beschäftigten

Zusammenfassung Biologische Wirkmechanismen:

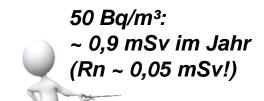
- Radon (Edelgas!) wird zum größten Teil wieder ausgeatmet
- Atemluft enthält Radonzerfallsprodukte (218Po, 214Pb, 214Bi, 214Po...) (überwiegend an in der Luft befindliche Aerosole / Staubteilchen angelagert).
- Ablagerung und radioaktiver Zerfall im Atemtrakt.
- Entstehung energiereicher Alphastrahlung, die die strahlenempfindlichen Zellen des Bronchialepithels trifft
 - ⇒ hohe biologische Wirksamkeit
 - ⇒ Schädigung am Erbgut der Zellen
 - ⇒ Entstehung einer Lungenkrebserkrankung begünstigt

Das einzige bisher nachgewiesene Gesundheitsrisiko durch Radon!

(...von der WHO 1980 als krebserzeugend eingestuft...)

-> die DOSIS wird nicht durch das eingeatmete Radon, sondern durch die kurzlebigen Folgeprodukte bestimmt!

Dosisfaktoren (...für alle die es genau wissen wollen...)

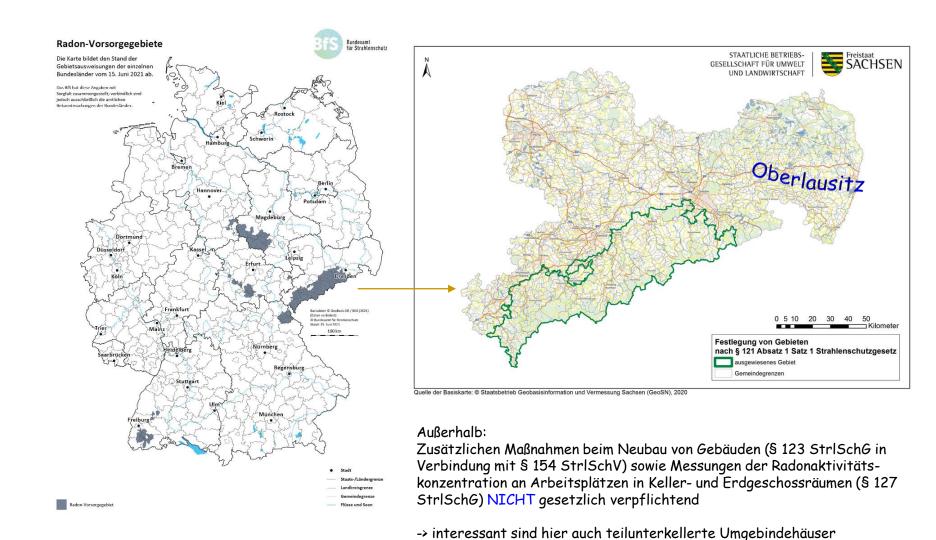

Verordnung zum Schutz vor der schädlichen Wirkung ionisierender Strahlung (Strahlenschutzverordnung - StrlSchV) **StrlSchV** - Ausfertigungsdatum: 29.11.2018 Geändert durch Art. 1 V v. 27.3.2020 I 748 Ersetzt V 751-1-8 v. 20.7.2001 I 1714; 2002 I 1459 (StrlSchV 2001)

ANLAGE 18, Teil B, 3.

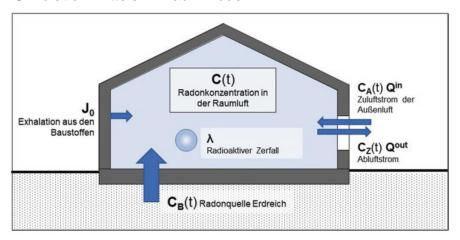
1 mSv

 \leftarrow 0,32 MBq / m³ h (F=0,4)

 \leftarrow 0,71 mJ / m³ h


Festlegung eines REFERENZWERTES:

-> ...das ist einfacher als immer die Dosis zu berechnen...

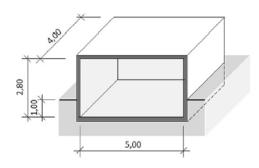

Radonvorsorgegebiete

-> Exhalation aus Baumaterialien?

Simulation mittels Einraummodell

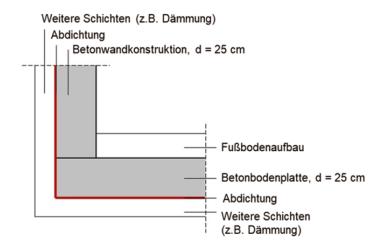
Fazit:

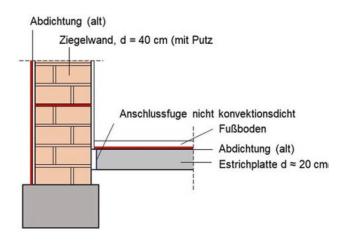
Exhalation aus Baustoffen kann in vielen Fällen vernachlässigt werden; sollte aber nicht generell unbeachtet bleiben


Beiträge ausgewählter Baustoffe zur Radonkonzentration in Räumen auf der Grundlage des Modellraumes (20 m² Grundfläche, 56 m³ Volumen)

Produkte / Baustoffe	Wertebereich	
	Bq/m ³	
Fließen, Gipsprodukte, Kalksandstein, Putze/ Mörtel, Estriche, Porenbeton	0 bis 4 Bq/m ³	
Ziegel	1 bis 14 Bq/m ³	
Zement, Leichtbeton, Beton	1 bis 14 Bq/m ³	
Beton und Porenbeton	3,2 bis 3,5 Bq/m ³	
Sandstein	3,2 Bq/m ³	
Porphyr	10,6 Bq/m ³	
Hüttenschlacke	1,9 Bq/m ³	
Naturbims	4,8 Bq/m ³	
Naturgips	0,6 Bq/m ³	
Chemiegips, Phosphorit	77,6 Bq/m ³	

Quelle: Uhlig, Schönmuth, Kemski: Radongeschütztes Bauen Springer Nature 2025


-> Diffusion oder Konvektion?

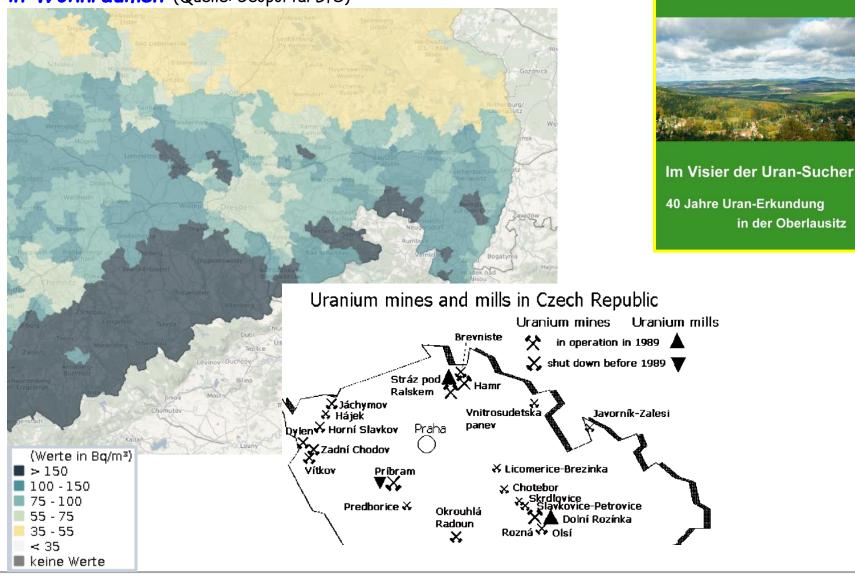


Modellraum, 20 m² Grundfläche

Beispiel1

Beispiel 2

Verhältnis Diffusion : Konvektion:

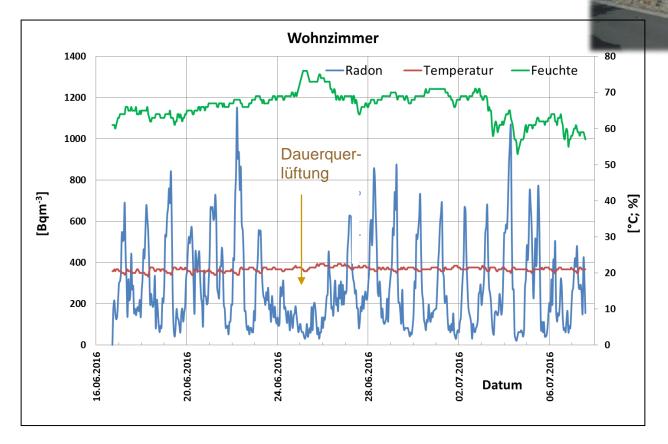

1:7

1:25

Quelle: Uhlig, Schönmuth, Kemski: Radongeschütztes Bauen Springer Nature 2025

Prognostizierte Werte der Radon-Aktivitätskonzentration in Wohnräumen (Quelle: Geoportal BfS)

Dieter Engelage


in der Oberlausitz

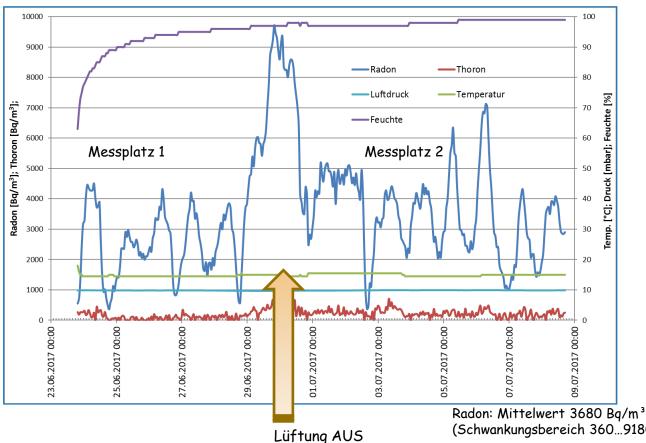
Ausgewählte Ergebnisse: Gebäude Stadtrand Zittau

Baujahr: 1780;

befindet sich im Bereich ehemaliger Grubenbaue bzw.

Hohlraum- und Verdachtsgebiete

Aufenthaltsraum:


Mittelwert 260 Bq/m³

(Schwankungsbereich 20...1150 Bq/m³)

Ausgewählte Ergebnisse: Gebäude Altstadt Bautzen

Stadthaus Bautzen, Tiefkeller Gewölbe mit Ziegel/Granit Kellerboden: vermutlich Schutt aus Zeit des 30 jährigen Krieges (?)

(Schwankungsbereich 360...9180 Bq/m³)

Thoron: Mittelwert 210 Bq/m³

(Schwankungsbereich <50...710 Bq/m³)

...Referenzwert 300 Bq/m³ überschritten - Was tun??

Don't panie!

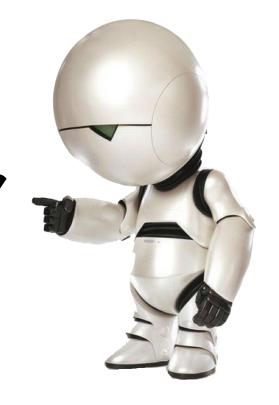


Abb: cleanpng.com

...Zielgröße 300 Bq/m³

Maßnahmen (hier: Bestandsgebäude)

- konvektionsdichte Abdichtung (i.a. nicht oder nur teilweise realisierbar)
- Unterdruckverfahren (z.B. Bodenluftabsaugung)
- >Lufttechnische Lösungen
- > Kombination der Methoden

...Beim Bestandbau ist i.d.R. immer eine individuelle Lösung erforderlich - wichtig ist daher eine *präzise diagnostische Voruntersuchung*

- · Erhöhung des Luftwechsels in Aufenthalts- und Arbeitsräumen
- · Einschränkung der Raumnutzung
- · Abschottung hochbelasteter Gebäudebereiche
- Verschluss offensichtlich sichtbarer Risse und Undichtheiten in der erdberührten Gebäudehülle.

...Zielgröße 300 Bq/m³

Beispiel nach BAG Wegleitung Radon (2023, CH): Maximale Sanierungsfristen in Abhängigkeit von der gemessenen Radonkonzentration sowie der typischen Raumnutzung

Gemessene Radonaktivitätskonzentration [Bq/m³)	Maximale Sanierungsfristen in Abhängigkeit von der Raumnutzung ¹⁾ bis ³⁾				
	Räume mit langem Personenaufenthalt (mehr als 30 Std/ Woche)	Räume mit kurzem Personenaufenthalt (15 bis 30 Std/Woche)	Räume mit nur gelegentlichem Personenaufenthalt (unter 15 Std/Woche)		
>300 bis 600	10 Jahre	30 Jahre	Keine Maßnahmen		
>600 bis 1.000	3 Jahre	10 Jahre	notwendig		
>1.000 bis 3.000	1 Jahr	3 Jahre			
>3.000	< 1 Jahr (Planung so- fort beginnen)	1 Jahr			

..

- Messergebnsse bestätigen vorliegende Informationen zum geologischen Untergrund -> Details von U. Heidrich
- Referenzwert kann in vielen Fällen eingehalten bzw. kann durch einfache Lüftungsmaßnahmen unterschritten werden
- Im Einzelfall: Aktive / Passive
 Lüftungen Umfangreiche bauliche
 Sanierung ist eher nicht notwendig
 -> eine detaillierte radiologische
 Bestandsaufnahme sollte
 immer die Voraussetzung sein

Herzlichen Dank für Ihre Aufmerksamkeit

Fragen???

